ARX

A Comprehensive Tool for Anonymizing Biomedical Data

Fabian Prasser, Florian Kohlmayer, Klaus A. Kuhn

Chair of Biomedical Informatics
Institute of Medical Statistics and Epidemiology

Rechts der Isar Hospital
Technische Universität München
Today’s presenters

Florian Kohlmayer

- Computer scientists, background in IT security and database systems
- Research assistants at the Chair for Biomedical Informatics at TUM
- Core-developers of ARX

Fabian Prasser
Today’s agenda

- Introduction
- Demonstration
- Questions & answers
Motivation: Data sharing in biomedical research

• Data sharing is a core element of biomedical research
 • Wellcome Trust: Sharing research data to improve public health [1]
 • OECD: Principles and guidelines for access to research data from public funding [2]

• Disclosure of data may lead to harm for individuals
 • Data may be person-related and highly sensitive

• Large body of laws & regulations mandates privacy protection
 • US: HIPPA Privacy Rule
 • EU: European Data Protection Regulation
 • DE: German Federal Data Protection Act

• Safeguards
 • Access control, policies, agreements, …
 • De-identification / anonymization
Overview: De-identification / anonymization

• **Controlling interactive data analysis**
 • **Subject:** query results, …
 • **Methods:** differential privacy, query-set-size control, …
 • **Implementations:** Fuzz, PINQ, Airavat, HIDE

• **Masking identifiers in unstructured data**
 • **Subject:** clinical notes, …
 • **Methods:** machine learning, regular expressions, …
 • **Implementations:** MIST, MITdeid, NLM Scrubber

• **Transforming structured data (focus of ARX)**
 • **Subject:** tabular data, …
 • **Methods:** generalization, suppression, …
 • **Implementations:** ARX, sdcMicro, PARAT
Background: Transforming structured data

- **Basic idea**: transform datasets in such a way that they adhere to a set of formal privacy guarantees

- **Typical transformations**
 - **Generalization**: Germany \rightarrow Europe (often applied to individual values)
 - **Suppression**: Germany \rightarrow * (often applied to whole entries)

- **Example generalization hierarchies**
Background: Transforming structured data (cont.)

- **Representation of gen. hierarchies**

 ![Tree diagram]

- **Full-domain generalization**: all values of an attribute are generalized to the same level of the associated generalization hierarchy

- **Search space**: combinations of all generalization levels (lattice)

 Tabular representation

<table>
<thead>
<tr>
<th>Level 0</th>
<th>Level 1</th>
<th>Level 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td><50</td>
<td>*</td>
</tr>
<tr>
<td>2</td>
<td><50</td>
<td>*</td>
</tr>
<tr>
<td>...</td>
<td><50</td>
<td>*</td>
</tr>
<tr>
<td>50</td>
<td>≥50</td>
<td>*</td>
</tr>
<tr>
<td>51</td>
<td>≥50</td>
<td>*</td>
</tr>
<tr>
<td>...</td>
<td>≥50</td>
<td>*</td>
</tr>
</tbody>
</table>

 Schema:

<table>
<thead>
<tr>
<th>Age</th>
<th>Gender</th>
<th>Zip code</th>
</tr>
</thead>
</table>

 Level 0 for attribute “gender”
 Level 0 for attribute “age”
 Level 1 for attribute “zip code”
Background: Privacy models

- **Well-known models**: k-anonymity, ℓ-diversity, t-closeness, δ-presence

- **Example**: k-anonymity
 - Proposed by Samarati and Sweeney in 1998 [3]
 - Attacker model: linkage via a set of quasi-identifiers (identity disclosure)
 - Mitigated by: building groups of indistinguishable data entries
 - Adherence can be achieved with generalization and suppression

<table>
<thead>
<tr>
<th>Age</th>
<th>Gender</th>
<th>Zip code</th>
</tr>
</thead>
<tbody>
<tr>
<td>34</td>
<td>male</td>
<td>81667</td>
</tr>
<tr>
<td>45</td>
<td>female</td>
<td>81675</td>
</tr>
<tr>
<td>34</td>
<td>female</td>
<td>81931</td>
</tr>
<tr>
<td>45</td>
<td>male</td>
<td>81925</td>
</tr>
<tr>
<td>70</td>
<td>female</td>
<td>81931</td>
</tr>
<tr>
<td>70</td>
<td>male</td>
<td>81931</td>
</tr>
<tr>
<td>66</td>
<td>male</td>
<td>80931</td>
</tr>
</tbody>
</table>

Age	Gender	Zip code
< 50 | * | 816** |
< 50 | * | 816** |
< 50 | * | 819** |
< 50 | * | 819** |
≥ 50 | * | 819** |
≥ 50 | * | 819** |
* | * | * |

Generalization (1,1,2)

2-anonymity

Suppression
Background: k-Anonymity

Original dataset

<table>
<thead>
<tr>
<th>Age</th>
<th>Gender</th>
<th>Zip code</th>
</tr>
</thead>
<tbody>
<tr>
<td>34</td>
<td>male</td>
<td>81667</td>
</tr>
<tr>
<td>45</td>
<td>female</td>
<td>81675</td>
</tr>
<tr>
<td>34</td>
<td>female</td>
<td>81931</td>
</tr>
<tr>
<td>45</td>
<td>male</td>
<td>81925</td>
</tr>
<tr>
<td>70</td>
<td>female</td>
<td>81931</td>
</tr>
<tr>
<td>70</td>
<td>male</td>
<td>81931</td>
</tr>
<tr>
<td>66</td>
<td>male</td>
<td>80931</td>
</tr>
</tbody>
</table>

Background knowledge, e.g. voter list

<table>
<thead>
<tr>
<th>Age</th>
<th>Gender</th>
<th>Zip code</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>45</td>
<td>female</td>
<td>81675</td>
<td>Alice</td>
</tr>
<tr>
<td>45</td>
<td>male</td>
<td>81925</td>
<td>Bob</td>
</tr>
<tr>
<td>70</td>
<td>male</td>
<td>81931</td>
<td>Charlie</td>
</tr>
</tbody>
</table>

2-anonymous dataset

<table>
<thead>
<tr>
<th>Age</th>
<th>Gender</th>
<th>Zip code</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 50</td>
<td>*</td>
<td>816**</td>
</tr>
<tr>
<td>< 50</td>
<td>*</td>
<td>816**</td>
</tr>
<tr>
<td>< 50</td>
<td>*</td>
<td>819**</td>
</tr>
<tr>
<td>< 50</td>
<td>*</td>
<td>819**</td>
</tr>
<tr>
<td>≥ 50</td>
<td>*</td>
<td>819**</td>
</tr>
<tr>
<td>≥ 50</td>
<td>*</td>
<td>819**</td>
</tr>
</tbody>
</table>

Background knowledge, e.g. voter list

<table>
<thead>
<tr>
<th>Age</th>
<th>Gender</th>
<th>Zip code</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>45</td>
<td>female</td>
<td>81675</td>
<td>Alice</td>
</tr>
<tr>
<td>45</td>
<td>male</td>
<td>81925</td>
<td>Bob</td>
</tr>
<tr>
<td>70</td>
<td>male</td>
<td>81931</td>
<td>Charlie</td>
</tr>
</tbody>
</table>

??
Challenge: Tool support

• **Situation**: anonymization of structured data is frequently recommended (laws, regulations, guidelines) but in practice it is only used rarely

• **Main reasons**
 • Lack of understanding of opportunities and limitations
 • Lack of ready-to-use tools

• **Non-trivial**: implementing useful tools is challenging

• **Usefulness has many dimensions**
 • Ability to balance data utility with privacy requirements
 • Support a broad spectrum of privacy methods, transformation techniques and methods for measuring and analyzing data utility
 • Performance and scalability
 • Intuitive visualization and parameterization of all process steps
 • Provide methods to end-users as well as programmers
 • In an integrated and harmonized manner
 • Openness
Challenge: Related software

- **sdcMicro**
 - Cross-platform open source software implemented in “R”
 - Collection of a set of methods, not an integrated application
 - Different types of recoding models and risk models
 - Minimalistic graphical user interface

- **μArgus**
 - Closed source software for MS Windows
 - Methods comparable to sdcMicro but more comprehensive user interface
 - Development has ceased

- **PARAT**
 - Commercial tool for MS Windows
 - Powerful graphical interface
 - Methods implemented overlap with methods implemented in ARX
 - Centered around a risk-based approach

- **More comprehensive list:** http://arx.deidentifier.org/related-software/

ARX: Highlights

- **Flexible transformation methods**: generalization and suppression in a parameterizable and utility-driven manner
- **Multiple privacy models**: k-anonymity, ℓ-diversity (three variants), t-closeness (two variants) and δ-presence, as well as arbitrary combinations
- **Multiple methods for measuring data utility**: automatically as well as manually
- **Optimality**: classification of the complete solution space
- **Functional generalization rules**: support for continuous and discrete variables
- **Highly scalable**: several million data entries on commodity hardware
- **Comprehensive cross-platform Graphical User Interface**: wizards, visualization of the solution space, analysis of data utility
- **Application Programming Interface**: full-blown Java library
ARX: Anonymization workflow

- Iteratively refine the anonymization process
- Supported by the scalability of our framework
- Three (potentially repeating) steps

1. **Configure**
 - Create and edit rules
 - Define privacy guarantees
 - Parameterize coding model
 - Configure utility measure

2. **Explore**
 - Filter and analyze the solution space
 - Organize transformations

3. **Analyze**
 - Compare and analyze input and output

Diagram:
- Import Data
- Configure
- Explore
- Analyze
- Export Data
ARX: Demo
ARX: Facts and credits

- Three years of work by two main developers: Florian Kohlmayer and Fabian Prasser
- With help from multiple students: see credits on our website
- Interdisciplinary cooperation: Chair for IT Security, Chair for Database Systems, Chair for Biomedical Informatics
- Code metrics
 - ARX Core/API: 178 files, 200 classes
 37,332 LOC (16,281 lines of comments)
 - ARX GUI: 174 files, 207 classes
 44,772 LOC (15,062 lines of comments)
 - ARX Tests: 997 JUnit tests
 - Commits: 1,722 commits (since 03/2013)
ARX: Publications

- **Implementation framework:** Proc Int Symp CBMS, 2012 [4]
- **Anonymization algorithm:** Proc Int Conf PASSAT, 2012 [5]

- **Anonymization of distributed data:** J Biomed Inform, 2013 [6]
- **Benchmark for anonymity methods:** Proc Int Symp CBMS, 2014 [7]

Thank you for your attention! Questions?

• Disclaimer
 • Anonymization must be performed by experts
 • Additional safeguards are required (e.g., contractual measures)

• ARX is open source software
 • Contributions are welcome, e.g., feature requests, code reviews, criticism, enhancements, questions

• Future developments: various projects, especially risk models

• Resources
 • Project website: http://arx.deidentifier.org
 • Code repository: https://github.com/arx-deidentifier/arx
 • Get in touch
 • Fabian Prasser (prasser@in.tum.de)
 • Florian Kohlmayer (florian.kohlmayer@tum.de)
References

*Equal contributors